Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0811720170210030327
Korean Journal of Physiology & Pharmacology
2017 Volume.21 No. 3 p.327 ~ p.334
Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5
Lee Dong-Un

Ji Min-Jeong
Kang Jung-Yun
Kyung Sun-Young
Hong Jeong-Hee
Abstract
Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established Ca2+ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular Ca2+ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular Ca2+ signaling in human lung fibroblastsMRC5 cells. We demonstrated that PM10, less than 10 ¥ìm, induced intracellular Ca2+ signaling, which was mediated by extracellular Ca2+. The PM10-mediated intracellular Ca2+ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle mediated signaling and oxidative stress accompanying lung diseases.
KEYWORD
Calcium signaling, Lung fibroblast, Oxidative stress, Particulate matter, Reactive oxygen species
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed